by Internet Medical Society
Background: The treatment of infectious diseases is still an important and challenging problem due to emerging infectious diseases and increasing number of multi-drug resistant microbial pathogens which cause a variety of illnesses ranging from hospital-acquired pneumonia, bloodstream infections, urinary tract infections from catheters, abdominal infections and even meningitis.
Methods: The main objective of the present study was to evaluate the antimicrobial efficacy and β-lactamase inhibitory activity of the synthesized 2-azetidinones against resistant bacterial strains obtained from clinical isolates.
Results: The tested 2-azetidinones exhibited antimicrobial efficacy comparable to the standard drugs Ampicillin and Griseofelvin. Among the tested compounds, N-[3-chloro-2-(2,5-dimethoxyphenyl)-4-oxoazetidin-1-yl]pyridine-4-carboxamide(5o) exhibited the highest activity with MIC of 6.25 µg/mL (Gram +ve and Gram –ve bacteria),1.56 µg/mL (A. niger) and 3.12 µg/mL(A. terrus and P. chrysogenum) respectively. Also all the screened compounds (5d, 5f, 5h,5j,5o) exhibited more pronounced activity (MIC: 125 µg/mL) against resistant K. pneumonia obtained from clinical isolates compared to standard antibiotic Amoxycillin. The compounds when tested as admixtures with the standard antibiotic amoxicillin (1:2) exhibited similar antibacterial spectra in comparison to the most widely employed clinical combination Augmentin. The 2-azetidinones can prove to be a cheaper alternative with similar potential β-lactamase inhibitory activity thereby proving their utility and benefit towards the development of anti-infectives for the treatment of infections caused by drug resistant microorganisms.
Link to full text
Tags:
Interested in advertising on Medicalia.org?
-------------------------
-------------------------
-------------------------
© 2022 Created by Network Admin.
Powered by